skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Davis, H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 30, 2026
  2. Cohen, R Jake (Ed.)
    3D printing holds promise for students with blindness/visual impairments (B/VI) in addressing astronomy content, concept development, and providing access to information normally displayed visually. To bolster astronomy and STEM opportunities for students with B/VI, we developed the Career Exploration Lab (CEL), which employs tactile astronomy instruction via 3D printing and specially designed 3D-printed astronomy models. The students with B/VI assemble and use a desktop 3D printer. To date we have held ~20 week-long CEL summer camps in 12 states around the United States, serving a total of ~120 students with B/VI. Teachers of the Visually Impaired and STEM teachers attended an Educator Partner Institutes (EPIs) to experience the astronomy lessons and 3D models. 34 educators from 11 states have participated and assisted with our CEL summer camps. We gathered pre- and post-intervention data via surveys, astronomy assessments, and interviews, resulting in what is likely the largest research study to date on astronomy and 3D printing instruction for students with B/VI. We present our CEL approach, a sample of our lessons and 3D models, insights learned, and best practices. Once fully tested and refined, we will make our 3D models and lessons freely available. We find 3D printing is useful in showcasing scientific data for understanding and appreciation of astronomy. 
    more » « less
    Free, publicly-accessible full text available March 17, 2026
  3. Astronomy has been a fascinating subject for the public for centuries and can stimulate deep questions not only on our own origin but subtly the richness of science and mathematics. It also is a science that is associated with engineering and technology to probe the universe. We have been conducting a large study of the usefulness of 3D printing for individuals (in particular students) with blindness or visual impairment (B/VI). In the environment of a summer camp, students with B/VI and their teachers (some with B/VI) build 3D printers kits and learn how to use them. We produce 3D prints of astronomical objects and use those and other assistive technologies to investigate how these methods can stimulate interest and improve skill in STEM for students with B/VI and their teachers. In the course of developing methods to produce 3D print materials, honing their design, and testing the prints in various environments, we have experienced that 3D printing has been quite useful in showcasing scientific data (largely from HST and JWST) to the general public for understanding and appreciation of science. The experience of holding a galaxy, a star cluster, or a model of the Sun resonates well with even the most casual interest in astronomy. 
    more » « less
  4. Abstract During the search for transition metal‐free alkyne hydrogenation catalysts, two new ternary Ca−Ga−Ge phases, Ca2Ga4Ge6(Cmc21, a=4.1600(10) Å, b=23.283(5) Å, c=10.789(3) Å) and Ca3Ga4Ge6(C2/m, a=24.063(2) Å, b=4.1987(4) Å, c=10.9794(9) Å, β=91.409(4)°), were discovered. These compounds are isostructural to the previously established Yb2Ga4Ge6and Yb3Ga4Ge6analogues, and according to Zintl‐Klemm counting rules, consist of anionic [Ga4Ge6]4−and [Ga4Ge6]6−frameworks in which every Ga and Ge atom would have a formal octet with no Ga−Ga or Ga−Ge π‐bonding. These compounds are metallic, based on temperature dependent electrical resistivity and thermopower measurements for Ca3Ga4Ge6, along with density functional theory calculations for both phases. Unlike the highly active 13‐layer trigonal CaGaGe phase, these new compounds exhibit minimal activity in the semi/full alkyne hydrogenation of phenylacetylene, which is consistent with previous observations that the lack of a formal octet for framework atoms is essential for catalysis in these Zintl‐Klemm compounds. 
    more » « less